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Abstract A pattern recognition algorithm for the alignment
of drug-like molecules has been implemented. The method
is based on the calculation of quantum mechanical derived
local properties defined on a molecular surface. This
approach has been shown to be very useful in attempting
to derive generalized, non-atom based representations of
molecular structure. The visualization of these surfaces is
described together with details of the methodology devel-
oped for their use in molecular overlay and similarity
calculations. In addition, this paper also introduces an
additional local property, the local curvature (CL), which
can be used together with the quantum mechanical
properties to describe the local shape. The method is
exemplified using some problems representing common
tasks encountered in molecular similarity.
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Pattern recognition . QSAR . Quantummechanics

Introduction

Recent publications [1–4] have introduced the concept of
local molecular properties projected onto a surface as a
generalized method for describing the physical properties of

molecules. These surfaces are composed of an isodensity,
shrink-wrapped molecular surface using the electron densi-
ty from semi-empirical quantum mechanical calculations.
Upon these surfaces are projected the values of a set of four
local properties; these being the Molecular Electrostatic
Potential (VL), the local Ionization Energy (IL), the local
Electron Affinity (EL) and local polarizability (aL). The
calculation of these properties has been implemented in the
program ParaSurf and is fully described in Lin and Clark [4].

This molecular representation has proved to be extreme-
ly useful in describing a range of chemical properties. The
inclusion of local representations of reactivity and polariz-
ability allows the methodology to tackle a wider range of
chemical problems than is available if only the van der
Waals and electrostatic properties are considered and is thus
significantly different from current computational technol-
ogies for performing similarity calculations related to high
throughput screening, in-silico docking and QSAR.

Crucially, the methods are not atom based. The atoms
merely form a scaffold about which the surfaces exist. The
use of quantum mechanical methods to calculate both the
surfaces and the properties overcomes a common problem
in that a, sometimes arbitrary, choice of a suitable atom type
is often necessary in atom based approaches. This, together
with the underlying physical basis of the methodology,
leads to a more generalized paradigm for molecular
representations. A further advantage of the quantum
mechanical approach is that all of the properties are derived
directly from the electron density matrix.

In this paper we present a method for the visualization of
these molecular surfaces and an algorithm for performing
molecular alignment and similarity calculations based on
them. The color coded surfaces are well suited to this
approach, since as well as providing a more general view of
the properties of a molecule, they are highly suitable for use

J Mol Model (2008) 14:49–57
DOI 10.1007/s00894-007-0251-2

B. D. Hudson (*) :D. C. Whitley :M. G. Ford
Centre for Molecular Design, Institute of Biomedical
and Biomolecular Sciences, University of Portsmouth,
Portsmouth PO1 2EG, UK
e-mail: brian.hudson@port.ac.uk

M. Swain : J. W. Essex
School of Chemistry, University of Southampton,
Highfield, Southampton SO17 1BJ, UK



in the visual, machine-learning based pattern recognition
techniques commonly used in areas such as manufacturing
quality control.

A number of methods for molecular alignment based on
atomic structure analysis have been developed. These
methods include geometrical hashing [5], Hopfield neural
networks [6, 7], and the quantum similarity superposition
algorithm (QSSA) [8, 9]. One method of interest is the
topogeometrical superposition approach (TGSA) [10, 11].
TGSA, like a number of other methods, finds a molecular
substructure common to the set of molecules being aligned,
such as atomic diads and triads. The alignment is performed
by matching substructure pairs located at relatively similar
positions. The most limiting feature of TGSA is that
different molecules must have some degree of similarity;
TGSAwas designed to align homogenous sets of molecules
[10].

Generalized procrustes analysis (GPA) is often used in
the social and behavioral sciences to align configurations
from different analyses to assess them with respect to each
other. Procrustes analysis allows four different transforma-
tions to be applied to configurations: translations, reflec-
tions, rotations, and scaling. Of these four transformations
only translations and rotations are relevant when aligning
molecules. However, this method requires the choice of a
set of common atoms for the alignment [12, 13]. An
advantage of the GPA method is that all molecules in the
dataset are aligned together to form a consensus alignment,
rather than a series of pair-wise alignments as is common in
other methods. In addition, atom based approaches often
decompose molecules into entities composed of atoms and
bonds, and so such methods are often not easily transferred
to molecular surfaces.

A method that has been developed for molecular
surfaces uses fuzzy set theory [14] with the surfaces
described by properties such as curvature, local lipophilic-
ity, electrostatic potential and the hydrogen bonding
density. Linguistic variables are used to generate surface
patches or domains, and these are used to search and
compare molecular surfaces. Another surface based ap-
proach that uses spherical harmonics to represent the
surface has been developed for proteins [15, 16] and small
molecules [17, 18]. A major advantage of this approach is
that the analytical representation of the surface allows
rotations to be calculated very quickly.

Barequet and Sharir [19], working within the fields of
computer vision and pattern recognition, developed a
general method for finding a full or partial alignment
between three-dimensional objects. Robinson et al. [20]
successfully used this method to align small molecules
represented by atoms and bonds. In this paper we have built
on the work of these authors and applied the method to
molecular surfaces.

The method is exemplified using test problems represent-
ing some of the common tasks encountered in molecular
similarity problems. The features of a typical molecular
surface are discussed particularly with regard to the color
coding and visualization, and the overlay of pharmacologi-
cally similar molecules.

Methods

Surface alignment

The superposition algorithm used is a modified version of
that described in Robinson et al. [20]. This algorithm is
outlined below with the notation following that of the
original paper.

We consider that we have two surfaces. The first, called
F, is fixed in space and used as a template, while the other,
called M, is able to move and it is this surface that we are
attempting to align to F. The basic approach is to describe
the surface in terms of a series of footprints. Each
footprint f is composed of two parts; the first is the
cartesian coordinates, f.coords, that can be transformed by
a rotation, whereas the second, some molecular property
f.desc, is independent of the coordinate system. The
surfaces calculated by the ParaSurf program consist of a
surface mesh that is defined by discrete points. Each of
these surface points is suitable for use as a footprint.
f.desc is used to describe local features, or characteristics,
of a surface. Example surface features could be based on
the surface's curvature, and would indicate whether the
surface has a maximum, a minimum or a saddle region at
each surface point. Features like this do not change when
the surface is rotated.

When aligning two different molecular surfaces the
problem is to identify which surface features, or foot-
prints, should be aligned with each other. A naive
approach would need to consider aligning every footprint
on surface F with every footprint on surface M. However,
when large numbers of possible alignments are consid-
ered, performing the surface alignment by rotating and
translating all the footprints is computationally expensive;
we therefore need to be more intelligent with the align-
ments that we consider. We can do this by first comparing
the descriptors for every footprint on F with every
footprint on M. If the descriptors are similar then we
know that we are comparing similar surface regions on the
two surfaces.

More formally, we fill a voting table with a list of voting
pairs composed of two footprints, one from each surface,
with similar descriptor values. Now consider that each
f.desc has a single, floating point value. Then we can
compare descriptors from each surface by calculating the
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absolute difference, abs, between two footprints F.f and
M.f from surfaces F and M respectively:

abs ¼ F:f :desc�M:f :descj j ð1Þ
The more similar the descriptors, the lower the value of

abs. The voting table is populated by calculating abs for
each possible voting pair. It is then possible to fill the
voting table by selecting a number N of the most similar
voting pairs by choosing a suitable value for abs. By
changing the value of N we can control the size of the
alignment problem, which in turn allows us to influence the
speed and accuracy of the method.

The transformation needed to align surface M to F is
given by a rotation R and a translation T. We want to find T
and R, and we do this by applying a series of rotations r to
surface M, each r transforming M to M(r). The problem
now is to deduce which r is the optimum R, and then given
that R is known, what is the best T needed to optimize the
alignment between F and M.

The optimum transformation is deduced in the following
manner. For each rotation r, a list of translations is
calculated. The translation list is composed of all trans-
lations t for each voting pair in the voting table. As each
voting pair contains a footprint from each surface, these
translations are calculated using:

t ¼ F:f :coord �M rð Þ:f :coord ð2Þ

This corresponds to the vector linking the surface point
on the fixed surface, F.f.coord, with the other surface point
of the voting pair on the moving surface after application of
the rotation, M(r).f.coord.

Using the translation list it is possible to locate a cluster
of similar translations t. At this stage we assume that the
center of this cluster gives us the best translation for the
current rotation. There are several methods that can be used
to find a cluster in the translation list. Here a method that is
analogous to a gravitational potential has been used. Each
t is treated like a body in space, with the position of the
body given by the vector components of t, so that the body

i with the highest potential Pi(r) will be at the center of the
densest cluster:

Pi rð Þ ¼
X

j2LðrÞ;j6¼i

1

jti � tjj ð3Þ

For every r, Pi(r) is calculated, and the maximum value of
Pi(r) gives the optimum rotation R. For Pi(r), the t at the
center of the densest cluster will give us a suitable value for
T. Following Robinson et al. [20], a cutoff is used in the
calculation of Pi(r) such that, if ti � tj

�� �� < 0:5, ti � tj
�� �� is set

to 0.5 A.
The surfaces and their physical properties are generated

by the ParaSurf program, which uses quantum mechanics to
calculate the electron densities at, or near, the molecular
surface. The electron densities are used to define the shape
of the surface and to compute the four descriptors that
define the local surface properties.

Although the four descriptors are useful for comparing
the physical properties of molecular surfaces, it is possible
to define a fifth descriptor that is more suitable for
comparing molecular shapes. This fifth descriptor is a
simple representation of the surface curvature, and is based
on an analysis of the surface points calculated by ParaSurf.
Rotationally invariant footprint descriptors play an essential
role in the accuracy and efficiency of this alignment
method. If we know which parts of the two molecules
need to be aligned with each other then we are already very
near a solution. It is also important for applications in drug
design that the physical properties of molecules can be
compared effectively, so that similar molecules can be
identified. This is particularly important as two molecules
with a similar shape can have very different chemical
activities.

The curvature descriptor is defined in the following
manner:

1. Calculate the center of mass of the surface, COM.
2. For each surface point p, find the N nearest surface

points. Here N may be set to a value equal to up to
100% of the total number of surface points.

Fig. 1 The curvature descrip-
tors created using 10% (left),
45% (center) and 100% (right)
of the nearest surface points for
a surface of 4038 points
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3. Define a triangle given by COM, p, and a nearby
surface point n.

4. Calculate the cosine of the angle A defined by COM-p-n.
5. Repeat the above procedure for all N closest points,

and calculate the average value of cosA. This gives a
description of the local curvature at the point p i.e., a
number pcurv with a value such that -1 < pcurv<1. For
a convex region, pcurv>0 and for a concave region,
pcurv<0.

Figure 1 shows an example surface colored according to
pcurv (the CRV descriptor). In this figure blue represents
areas where the surface is concave (pcurv<0) and red
represents convex surfaces (pcurv>0). The figure also shows
the effect of the value of N on the representations. If all
points are used in the calculation of the curvature the
representations are highly localized. If smaller numbers
(e.g. 45%) are used the descriptor is more diffuse. The

default value used is 100%. The curvature descriptor is
used, in the applications presented here, to define the voting
table V.

The problem of scoring the matches between individual
molecules remains. The gravitational potential, given by
Eq. (3), is effective in picking out the optimum translation
and rotation, but because different pairs of surfaces have
different numbers of voting pairs, this equation is not so
useful for identifying, from a dataset of surfaces, the most
similar pair. We have used Eq. (4), based on the Coulomb
relationship, to compare alignments using each of the five
descriptors. Here the sum is over all surface points Ni and
Nj of the two surfaces, Φi is the descriptor value for each
surface point, and rij is the distance between the two
surface points i,j using a cutoff of 0.001 Å to avoid
overflows in Eq. (4).

Eprop ¼ 1
NiNj

XNi

i¼1

XNj

j¼1

Φi Φj

r2ij
ð4Þ

The individual scores for each of the descriptors are
combined to give a total score using Eq. (5). In practice the
weights in Eq. (5) have been set to unity.

Etotal ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wmepE2

mep þ wielE2
iel þ wealE2

eal þ wpolE2
pol þ wcrvE2

crv

q

ð5Þ
The algorithm has been implemented in the software

program ParaMatch. The general features of the algorithm
are described below.

Fig. 2 Additive RGB color scheme

Table 1 Property ranges for drug datasets

Chembank Drugs

N 4515 73
IEL mean (median) 475.76 (472.36) 464.74 (458.70)
IEL sd 54.70 53.81
IEL range 366.36 to 585.16 357.12 to 572.36
EAL mean (median) −91.35 (−96.06) −90.26 (−95.22)
EAL sd 20.18 18.93
EAL range −50.99 to −131.71 −52.4 to −128.12
POL mean (median) 0.29 (0.29) 0.3 (0.3)
POL sd 0.04 0.03
POL range 0.21 to 0.37 0.24 to 0.36

Fig. 3 Molecular structures of Lorazepam and Diazepam

Fig. 4 Molecular surfaces for Lorazepam (left) and Diazepam (right)
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Figure 1 uses 4038 surface points, and this results in
over 16 million possible voting pairs. If such a large
number of voting pairs are used in the alignment procedure
it will take a very long time to find a solution. However, if
too few voting pairs are used poor alignments may result.
This may happen because the points involved in the voting
pairs sample the overall surface shapes badly. Poorly
sampled surfaces can be avoided by specifying that the
surface points used in the voting table are separated by a
minimum distance. The default value for this distance is
2.0 Å. This typically reduces the number of surface points
by a factor of over 100.

Surface visualization

To visualize the properties simultaneously, an encoding of
the properties onto the RGB color scale was performed. To
do this, the local ionization energy (IL), local electron
affinity (EL) and local polarizability (aL) are range scaled to
values between 0 and 1 and these values are assigned to the
red, green, and blue channels respectively using the
additive RGB color scheme. Figure 2 shows a schematic
representation of the additive RGB scheme.

Unfortunately, this simple scheme has some problems.
Firstly, the colors are scaled relative to the internal range of
an individual molecule. This highlights differences within
the molecule and is useful when considering, for instance,
chemical substitution patterns. However, it makes compar-
isons between molecules that do not have similar ranges of
the properties impossible. Secondly, a single functional
group can significantly skew the ranges and hence change
the colors over the whole molecule. Most noticeable is
replacement of hydrogen atom in a molecule with a highly
polarizable group such as chlorine. This correctly shows a
blue region round the chlorine but has the effect of reducing

the blue in other parts of the molecule and thus distorting
the overall colors of the molecules.

As a result of this we have developed an absolute color
coding scheme. This uses representative property ranges for
a number of typical drug molecules. Properties were
calculated for two datasets, a small database of 73
commonly prescribed drugs [21] and a larger dataset of
4,515 drugs taken from the Chembank bioactives database
[22]. Table 1 shows the descriptive statistics for these
datasets for the three local properties. It can be seen in this
table that the statistics are similar for both datasets,
indicating that the drugs dataset can be used as a
representative drug set. It is also clear that there is little
difference between the mean and the median of the
properties indicating that the use of the mean value is
acceptable. In order to avoid the overdue influence of
extreme points, the range was calculated as twice the
standard deviation about the mean. The values of the
chembank dataset were used as the absolute RGB color
coding scheme.

The electrostatic potential (VL) is treated differently.
Since there are only three color channels available and the
features of the electrostatic potential of molecules are fairly
well understood, we chose to encode only the local maxima
and minima of this property. These are superimposed onto
the surface as solid balls with blue balls representing
minima and red maxima of VL. This representation is a
means to depict all four properties in a single figure.

In the following examples, structures of all molecules
were generated using CORINA [23]. Quantum mechanical
procedures, including geometry optimization of the COR-
INA structures, were calculated using the AM1 hamiltonian
using VAMP 9.0 [24]. The molecular surfaces, comprising
the isodensity surface and the projected values of the local
properties, were calculated using the default parameters in

Fig. 5 Overlays of Lorazepam
and Diazepam. (a) Hex canoni-
cal; (b) ParaMatch using CRV;
(c) ParaMatch using MEP

Fig. 6 Molecular structures of
heterocyclic rings in Dihydrofo-
late (DHF) and Methotrexate
(MTX)
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ParaSurf [25]. Graphical representations were generated
using freely available software including geomview [26]
and pyMol [27]. Alignments using the above algorithm
were performed using ParaMatch with both the curvature
descriptor and the molecular electrostatic potential. In all
cases the minimum number of voting pairs was set to 200
and the angular increment used in the rotational search was
set to 5 degrees.

As a comparison, the molecular alignments produced
using ParaMatch, are compared with the equivalent results
produced using the program Hex [15]. Hex is a molecular
alignment tool based on spherical harmonic representations
of molecular surfaces. In this work, the canonical alignment
function of Hex, where the molecules are aligned by
maximizing the fit between the first six spherical harmonic
coefficients of the expansion of the molecular surface [21],
was used. This is equivalent to aligning the longest axis of
the molecules along the X axis, the largest orthogonal axis
along the Y axis and the largest axis orthogonal to both
along the Z axis.

Results

Example 1: Benzodiazepines

The first example is a relatively simple overlay between
two chemically similar molecules, Lorazepam and Diaze-
pam (Fig. 3).

The molecular surfaces produced from the ParaSurf local
properties are shown in Fig. 4.

The general features of these chemically and pharmaco-
logically similar molecules are obvious in the representa-
tions. Pure blue represents a region of high local
polarizability and it can be clearly seen that Lorazepam
and Diazepam share a common polarizability only region.
Lorazepam has an additional such region. The use of the

quantum mechanically derived potentials and the RGB
coding scheme in these representations leads to very
different visual models of the chemical nature of the
molecules than the more common atom centered coulomb
model would produce.

Since the representations give a reasonable description
of the ParaSurf surfaces, the major application of Para-
Match is to align molecules based on their local surface
properties and to assess the degree of similarity between the
molecules in that alignment. The calculations were per-
formed using both the CRV and MEP descriptors to align
the surfaces.

Figure 5a-c shows the overlays. In these figures the
fixed molecule is represented with the carbon atoms in
green and the moving molecule has the carbons in cyan.
Figure 5a is the canonical alignment from Hex. This
alignment is similar to that which would be produced
using an atom-based alignment of the common rings,
modified by the presence of the methyl group in Diazepam
and the extra chloro group in Lorazepam. Figure 5b shows
the ParaMatch alignment based on the CRV descriptor. It
can be seen that the positions of the phenyl rings have
been reversed compared to the canonical alignment. The
score for this alignment, using the weighted sum of all five
properties (Eq. (5)) is 33.6. The alignment based on the
MEP (Fig. 5c) is more similar to the canonical alignment
but the atoms are displaced somewhat reflecting a better
fit between the values of the MEP. The score for this
alignment is 33.8, which shows a slightly better fit than
that obtained with the CRV descriptor.

Example 2: DHFR inhibitors

In this example, we have repeated the examples described
in Kearsley et al. [28]. In this, the heterocyclic rings of
two molecules, which bind to the enzyme dihydrofolater-
eductase (DHFR), were aligned using the steric and

Fig. 7 Overlays of DHF and
MTX in the keto form. (a) Hex
canonical; (b) ParaMatch using
CRV; (c) ParaMatch
using MEP

Fig. 8 Overlays of DHF and
MTX in the enol form. (a) Hex
canonical; (b) ParaMatch using
CRV; (c) ParaMatch
using MEP
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electrostatic alignment (SEAL) algorithm. The first of
these was the natural substrate dihydrofolate (DHF) and
the second was a highly effective inhibitor, methotrexate
(MTX). A problem with this analysis is that only the keto
form of the DHF ring was studied, whereas the enol form
is equally likely. Indeed it is the enol form of DHF which
is often portrayed in chemical depictions. This tautomer
problem is significant for all 3D methods of alignment,
and has yet to be resolved. The chemical structures of the
rings are shown in Fig. 6.

The two molecules were therefore investigated using
ParaMatch. Figures 7a-c show the Hex canonical and the
ParaMatch CRV and MEP alignments of MTX and DHF in
the keto form respectively. Figures 8a-c show the equiva-
lent alignments of the enol form of DHF.

Crystallographic structures of both of these molecules
bound to L. Caseii DHFR have long been a test bed for
molecular modeling applications. According to Kearsley,
there are two possible overlays for the heterocyclic rings in
these two molecules. The chemically intuitive alignment
overlays the fused 6,6 ring systems, with the oxygen of
DHF matched to the ortho amino of MTX. This is the
alignment given by Hex when DHF is in the enol form
(Fig. 8a).

However, the crystallographically observed alignment
differs. Here the oxygen of DHF is aligned with the
pyridine-like nitrogen in the other ring. This alignment is
seen in the Hex and both of the ParaMatch alignments
(Figs. 7a-c). The consistency of these matches with the
observed alignment would lend support to the use of the
keto form by Kearsley. It is of interest to note here that both
the ParaMatch alignments using the enol form have the
rings swapped over (i.e., the connecting linkers, represented
here by the methyl group, are at opposite ends of the
aligned molecules). It is also interesting that the ParaMatch
alignments, using either the CRV or MEP descriptors, are
essentially the same, suggesting that the fit is good both in
steric and electrostatic terms.

The second DHFR alignment is taken from Robinson
et al. [20]. This particular alignment proved problematic for
many similarity optimizers due to the larger size of the para
substituent of the phenyl ring. The structures are in Fig. 9.

The Hex canonical alignment (Fig. 10a) fails on this
example. The di-aminopyrimidine rings are located at the
opposite ends of the molecules in the alignment. This
would probably be corrected by using the spherical
harmonic coefficients of the MEP expansion (rather than
the expansion of the radial function used here). Indeed, a
combination of the two expansions may give the correct
alignment. However, there is another problem relating to
the centers of gravity of the molecules. The spherical
harmonic expansions assume that the centers of gravity of
the two molecules are coincident. Thus, the shorter
molecule lies within the confines of the larger, despite the
fact that it is only at the extremities that they differ.

This illustrates an important feature of ParaMatch, i.e.,
that overlaying the centers of gravity is not a requirement.
This allows for the possibility of partial matching of the
molecular features, which can be of vital importance in
some overlaying exercises. An obvious example would be
in alignment prior to a 3D QSAR approach such as
CoMFA.

Example3 : HIV-1 reverse transcriptase inhibitors

This example is the high-diversity alignment, from Robinson
et al. [20], describing the two non-nucleoside inhibitors of
HIV Reverse Transcriptase, α−APA and Nevirapine. The
structures are shown in Fig. 11.

The major feature of the crystallographic alignment is
the counter-intuitive match of the cyclopropyl ring in NEV
with the amide group in APA. This would suggest that the
shape features of this receptor are more important than
electrostatic effects.

The Hex canonical alignment (Fig. 12a) gives a good
description of the two diverse molecules based on their
shape. The ParaMatch alignment based on the CRV
descriptor shows a similar behavior. Neither of these
alignments shows the correct orientation of the cyclopropyl
and amide groups. Of more interest is the ParaMatch
alignment based on the MEP. This shows the cyclopropyl
ring of NEV being on the same side of the alignment as the
amide group of APA. The translation makes this a very

Fig. 9 Molecular structures of low-diversity DHFR structures

Fig. 10 Overlays of low-diversity
DHFR structures. (a) Hex canon-
ical; (b) ParaMatch using CRV;
(c) ParaMatch using MEP
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poor overlay, but it suggests that the combination of
descriptors, as discussed above, may give rise to a
chemically meaningful result.

Discussion

The ParaMatch software described here shows promise in
addressing the issue of alignment of molecules for virtual
high throughput screening or 3D QSAR. This is particularly
the case when used in conjunction with very fast alignment
procedures such as Hex. This observation also suggests
another role for ParaMatch in high throughput alignment
studies. The need for speed in these calculations is critical
due to the large numbers of structures needing to be
assessed. The canonical alignment in Hex gives a very
good approximation to the alignment in a short amount of
CPU time (owing to the use of computationally efficient
rotation functions). However, it will always superimpose
the molecular centers of gravity. It is proposed that
ParaMatch could be used in an optimization mode in which
the Hex alignments could be tweaked using ParaMatch.
This would not require the extensive systematic search of
the ParaMatch alignments reported here and would there-
fore significantly reduce the computational requirement. At
the simplest level, ParaMatch could be run with the rotation
increment set to zero, i.e., ParaMatch would perform a
simple translational optimization. In practice, it is envi-
sioned that a small number of rotations would be
performed, at small angle increments, about the Hex
solution.

The identification of the matching voting pairs could be
improved. Currently, this is done using a simple tolerance

of the difference in the value of the property (Eq. (1)). It is
not clear, for instance, whether two minima in similar
positions but with different depths would be recognized as
a voting pair in the current implementation. A better choice
of the voting pairs would also improve the algorithm. An
example would be to use the critical points (maxima and
minima) of the surface properties as the initial grid from
which the voting pairs are selected. Thus only chemically
significant surface points would be considered for inclusion
in the voting table. In the current implementation, many of
these potential voting pairs will have been selected from the
mid points of the property distribution. This should also
improve the computational efficiency, since the number of
potential voting pairs would be dramatically reduced.

The program currently performs the alignment using an
exhaustive grid search about the cartesian axes. This over-
represents possible alignments near the poles. A better
option would be to use a table of angles resulting in points
equidistant on the surface of a sphere. This should again
lead to computational speed up. Note that, if ParaMatch is
being used solely to optimize a local orientation from Hex
then this would be of limited value.

The selection of voting pairs for use in the gravitational
potential calculation relies on a tolerance (Eq. (1)) and the
cut off applied to Eq. (3) (the latter to stop very close
matches from dominating). The values used here are taken
directly from reference [20]. Since these values relate to
different footprints, (atomic co-ordinates), the values
currently being used could be investigated and possibly
optimized for property based footprints.

The major factor that determines the computational cost is
the exhaustive search. At resolutions sufficient to get
reliable, reproducible solutions, the CPU time is very long
(hours) which is inappropriate for virtual high throughput
screening. An optimization methodology could be devel-
oped to overcome this requirement. One possibility would be
a coarse search followed by a local optimization such as a
simplex or steepest descent method. A more sophisticated
approach using simulated annealing or genetic algorithm
techniques may also be possible. However, this is a complex
problem, which is beyond the scope of the present work.

ParaMatch currently only performs alignments based on
a single property. It would be useful to match on weighted

Fig. 12 Overlays of Nevirapine
and alpha-APA. (a) Hex canon-
ical; (b) ParaMatch using CRV;
(c) ParaMatch using MEP

Fig. 11 Molecular Structures of Nevirapine and alpha-APA
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combinations of properties. For ParaMatch this is problem-
atic as, unlike the spherical harmonic coefficients, the
properties have different ranges.

Conclusions

The combination of the molecular surfaces with the pattern
recognition algorithm shows utility in a number of typical
tasks performed in the field of molecular overlay and
superposition. The method is general in that it is not atom-
based, uses quantum mechanics to derive its properties and,
with the inclusion of reactivity parameters, is applicable in
a wide range of chemical problems. In addition, it could be
made more accurate by going to a higher level of theory,
without any fundamental changes to the underlying
algorithm, although it should be noted that ParaSurf is
currently restricted to semi-empirical hamiltonians.

The use of local descriptions, such as those used by
ParaSurf, would appear to have significant advantages over
global approximations, and certainly over artificial atomis-
tic models. The pattern recognition program ParaMatch can
use these descriptions to perform molecular alignments.
The advantages of this approach include molecular align-
ments where the center of gravity superposition approxi-
mation is not appropriate. The software can also be used to
fine tune the results of highly computationally efficient
structure alignment methods (such as Hex) at little extra
cost.

The method has been shown to have potential in
providing a generalized pattern recognition methodology
applied to physically realistic quantum mechanical proper-
ties. The methods suffer, as do all 3D similarity methodol-
ogies, from the problems of conformational change and
tautomerism. These issues are currently under consideration.
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